Runge–Kutta discontinuous Galerkin method for reactive multiphase flows
نویسندگان
چکیده
منابع مشابه
Space-time Discontinuous Galerkin Method for Rotating Shallow Water Flows
In the present work, we analyze the rotating shallow water equations including bottom topography using a space-time discontinuous Galerkin finite element method. The method results in non-linear equations per element, which are solved locally by establishing the element communication with a numerical HLLC flux. To deal with spurious oscillations around discontinuities, we employ a stabilization...
متن کاملA discontinuous Galerkin method for inviscid low Mach number flows
10 In this work we extend the high-order Discontinuous Galerkin (DG) Finite element 11 method to inviscid low Mach number flows. The method here presented is designed 12 to improve the accuracy and efficiency of the solution at low Mach numbers using 13 both explicit and implicit schemes for the temporal discretization of the compress14 ible Euler equations. The algorithm is based on a classica...
متن کاملA Level Set Discontinuous Galerkin Method for Free Surface Flows
We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation as well a various ways of advancing the equations in time using velocity projection techniques. The eff...
متن کاملA High Order Discontinuous Galerkin Method for 2D Incompressible Flows
In this pat)er we introduce a high order discontinuous Galerkin method for two dimensional incoinpressible flow in vorticity streamfunction fornnllation. The inonlentuni equation is treated exl)licitly, utilizing the efficiency of the discontimtous Galerkin method. The streanlflmction is obtained by a standard Poiss(m solver using (:ontinu(lus finite elenmnts. There is a natural matching betwee...
متن کاملDiscontinuous Galerkin Finite Element Method for Inviscid Compressible Flows
This paper presents the development of an algorithm based on the discontinuous Galerkin finite element method (DGFEM) for the Euler equations of gas dynamics. The DGFEM is a mixture of a finite volume and finite element method. In the DGFEM the unknowns in each element are locally expanded in a polynomial series and thus the information about the flow state at the element faces can be directly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Fluids
سال: 2013
ISSN: 0045-7930
DOI: 10.1016/j.compfluid.2012.07.011